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Abstract

de Oliveira, Felipe; Griffiths, Simon (Advisor). A Characterization
of Testable Graph Properties in the dense graph model. Rio
de Janeiro, 2023. 59p. Dissertação de Mestrado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

We consider, in this thesis, the question of determining if a graph has a
property P such as “G is triangle-free” or “G is 4-colorable”. In particular,
we consider for which properties P there exists a random algorithm with
constant error probabilities that accept graphs that satisfy P and reject graphs
that are ϵ-far from any graph that satisfies it. If, in addition, the algorithm
has complexity independent of the size of the graph, the property is called
testable. We will discuss the results of Alon, Fischer, Newman, and Shapira
that obtained a combinatorial characterization of testable graph properties,
solving an open problem raised in 1996. This characterization informally says
that a graph property P is testable if and only if testing P can be reduced to
testing the property of satisfying one of finitely many Szemerédi-partitions.

Keywords
Approximation Algorithms; Randomized Algorithm; Graph Algorithms;

Property Testing; Szemerédi’s regularity lemma.
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Resumo

de Oliveira, Felipe; Griffiths, Simon. Uma caracterização de propri-
edades testáveis no modelo de grafos densos. Rio de Janeiro, 2023.
59p. Dissertação de Mestrado – Departamento de Matemática, Pontifícia
Universidade Católica do Rio de Janeiro.

Consideramos, nesta dissertação, a questão de determinar se um grafo
tem uma propriedade P , tal como “G é livre de triângulos” ou “G é 4-
colorível”. Em particular, consideramos para quais propriedades P existe um
algoritmo aleatório com probabilidades de erro constantes que aceita grafos que
satisfazem P e rejeita grafos que são ϵ-longe de qualquer grafo que o satisfaça.
Se, além disso, o algoritmo tiver complexidade independente do tamanho
do grafo, a propriedade é dita testável. Discutiremos os resultados de Alon,
Fischer, Newman e Shapira que obtiveram uma caracterização combinatória de
propriedades testáveis de grafos, resolvendo um problema em aberto levantado
em 1996. Essa caracterização diz informalmente que uma propriedade P de
um grafo é testável se e somente se testar P pode ser reduzido a testar a
propriedade de satisfazer uma das finitas partições Szemerédi.

Palavras-chave
Algoritmos de aproximação; algoritmos aleatorizados; algoritmos em

grafos; testagem de propriedades; O lema de regularidade de Szemerédi.
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1
Introduction

Imagine a poll where n voters must vote Yes or No. Let us encode the
votes in an n-bit array A, where A[i] is 1 if the ith voter voted Yes and 0
otherwise. The question we would like to address is: is it possible to decide
whether Yes won the election by looking at just a small part of the array? If
we call MAJ the set of arrays where Yes is the majority, we are wondering if
it is possible to quickly decide whether A ∈ MAJ. If A ∈ MAJ we say that A

has the majority property.

Figure 1.1: Array in MAJ

Figure 1.2: Array not in MAJ

The natural answer is no, since in the worst case, the last voter may be
able to decide the result.

However, in the age of Big Data, processing all the data can be a very
costly task. It is natural then to try to relax the problem to enable a quick
analysis. One way to do this is to note that the example in Figure 1.2 is not in
MAJ, but it is very close to MAJ. We can turn it into a vector in MAJ, as the
one in Figure 1.1, by editing just one entry. We’ll change our question then to
“Is it possible to quickly differentiate between arrays in MAJ and arrays that
are far from MAJ?”

To answer this question, we first need to make it mathematically precise.
Let us use the normalized Hamming distance to measure the distance between
two arrays x and z:

δ(x, z) =

| {i ∈ [| x |] : xi ̸= zi} | / | x | if | x |=| z |

∞ otherwise
, (1-1)

where | x |:= length of array x and [| x |] := {1, 2, 3 . . . , | x |}.
Let C be a set, we define the distance from x to C as δC(x) :=

minz∈C{δ(x, z)}. Clearly, δC(x) = 0 ⇐⇒ x ∈ C. We say that x is ϵ-far
from C if δC(x) > ϵ, otherwise x is ϵ-close to C.

We will present a random algorithm in this section that will take x and
ϵ as inputs and has three important properties: firstly, it returns the correct
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Chapter 1. Introduction 12

output with very high probability when given a x ∈ MAJ , secondly, it returns
the correct ouput with very high probability when given a x ϵ-far from MAJ ,
and finally, it has complexity that only depends on ϵ. It is formally stated in
Proposition 1.1.

Proposition 1.1 Algorithm 1 satisfies the following 3 properties:

1. For every x ∈ MAJ , Pr[Output = MAJ ] ≥ 99.99%;

2. For each x such that δMAJ(x) > ϵ, Pr[Output = FAR] ≥ 99.99%;

3. The complexity of the algorithm is independent of |x|.

Also, the algorithm queries only O(1/ϵ2) entries.

Notes:

– We are not making any guarantees when the input x is such that
0 < δMAJ(x) < ϵ;

– The probabilities in the proposition are in relation to the randonmess
of the algorithm. For example, the first property, Pr[Output = MAJ ] ≥
99.99% does not mean that it holds for 99.99% of the inputs. For every
input x ∈ MAJ the output is MAJ with probability at least 99.99%.

Algorithm 1: Random tester for majority property
1 Input : string x, proximity parameter ϵ
2 Output: MAJ if the algorithm says that x ∈ MAJ, FAR otherwise
3 Set m = 200/ϵ2

4 Let (i1, . . . , im) be a string of m uniformly and independently chosen
indices in {1, . . . , |x|}

5 if ∑j∈[m] xij
/m > (1 − ϵ)/2 then

6 Return MAJ
7 else
8 Return FAR

To prove Proposition 1.1 we need the following auxiliary result.

Lemma 1.2

Pri1,...,im∈[|x|]

∣∣∣∣∣∣
∑

j∈[m] xij

m
−
∑|x|

i=1 xi

| x |

∣∣∣∣∣∣ > ϵ/2
 ≥ 10−4.

Where i1, . . . , im ∈ [| x |] means that i1, . . . , im are independent and uniformly
distributed over [| x |].
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Chapter 1. Introduction 13

Proof Let X1, . . . , Xm be random variables associated with xi1 , . . . , xim .
They are independent, identically distributed and have an image in [0, 1].
Furthermore, we have E[X1] =

∑|x|
i=1 xi

|x| . Therefore, by a Chernoff inequality
10.2, we have:

Pr

∣∣∣∣∣∣
∑

i∈[m] Xi

m
−
∑|x|

i=1 xi

| x |

∣∣∣∣∣∣ > ϵ/2
 < 2e−ϵ2m/16 = 2e−200/16 < 10−4.

■

With this lemma in mind, we may now analize the listed properties and
prove Proposition 1.1.

Proof of Proposition 1.1
Property 1: If x ∈ MAJ, then ∑i∈[|x|] xi >| x | /2. Applying Lemma 1.2,

we have
∑

j∈[m] xij

m
∈ (1/2−ϵ/2, 1] with probability greater than 99.99%. In this

case, we have that the probability of the algorithm returning MAJ is greater
than 99.99%.

Property 2: If x is ϵ-far from MAJ, we have ∑i∈[|x|] xi ≤ (1/2 − ϵ) | x |.

Applying Lemma 1.2, we have that
∑

j∈[m] xij

m
∈ [0, 1

2 − ϵ
2) with probability

greater than 99.99%. In this case, we have that the probability of the algorithm
returning FAR is greater than 99.99%.

Property 3: We perform m times the operation of randomly selecting an
index between 1 and | x |, where we assume that each of these operations has
a unit cost. All other operations have O(m) complexity. The total complexity
is therefore O(m) = O(1/ϵ2), which is independent of | x |. ■

We are then able to differentiate between arrays in MAJ and arrays that
are ϵ-far of MAJ by reading only O(1/ϵ2) entries, which is indendepent of the
size of the array! Would it be possible to do the same with a deterministic
algorithm? The answer is no, as stated in Proposition 1.3 [1].

Proposition 1.3 Any deterministic algorithm that distinguishes between in-
puts in MAJ and inputs that are 0.5-far from MAJ must make at least n/2
queries, where n is the length of the input.

Algorithm 1 is called a tester for the property of being in MAJ. This kind
of algorithm began to be systematically studied by Goldreich, Goldwasser and
Ron [2].

For some graph problems, it is possible to obtain efficient testers. Graphs
such that it is possible to color all of their vertices with 3 colors so that no two
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Chapter 1. Introduction 14

adjacent vertices connected with the same color are called 3-colorable. Given a
graph, decide whether it is 3-colorable is an NP-complete problem, as discussed
in the paper by Garey, Johnson, and Stockmeyer [3]. However, it is possible to
test it in constant time using a randomized tester that differentiate between
3-colorable graphs and graphs that are ϵ-far from the 3-colorable graphs set.

It is not always possible, however, to develop a random algorithm to
decide whether a graph has a certain property. Some examples of properties of
this type can be found in Fischer [4]. Our main objective in this dissertation
is to reproduce the result of Alon, Fischer, Newman and Shapira [5] which
establishes a combinatorial characterization of the testable graph properties.

1.1
Overview of the dissertation

The dissertation is organized as follows: In Chapter 2 we introduce some
basic notation about graphs and in Chapter 3 we make formal definitions
about Graph Property Testing. This chapter states most of the definitions and
notation used during the thesis and is essential, as definitions and notation
vary in the literature.

In Chapter 4 we introduce the regularity lemma, a key result proved by
Szemerédi [6], which is widely used in this thesis. In addition, we make the
exact formulation of the main result using the definitions of previous chapters.
In Chapter 5, we state some auxiliary results that will be necessary for the
proof of the main result.

In Chapter 6 we state results that use the regularity lemma to estimate
the number of induced subgraphs H in a graph G that satisfy certain regularity
conditions. In Chapter 7 we prove the first direction of the main result. In
Chapter 8 we state results about how regularity is passed to induced graphs.
All these results appear in [5], which is an extension of the results of [7].

In Chapter 9 we prove the second part of the main theorem using the
tools defined in the previous chapters.
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2
Background on Graphs

In this section we define the notation and definitions about graphs used
in this dissertation. We assume the reader is familiar with these concepts.

A simple graph G = (V, E) consists of a finite set V of vertices and a
finite set of edges E. Each edge is a set of 2 vertices u, v such that u, v ∈ V

and u ̸= v. We call u and v endpoints of the edge. In this way, we are not
considering parallel edges or self-loops.

In our case, the order of the n vertices is not important, so we can
arbitrarily order them and think of V as {1, . . . , n} = [n].

If there is an edge {u, v} ∈ E, we say that u and v are adjacent in the
graph, or that u and v are neighbors.

For a vertex v ∈ V of a graph G = (V, E), ΓG(v) denotes the set of
neighbors of v:

ΓG(v) := {w ∈ V : {v, w} ∈ E}. (2-1)
A subgraph of the graph G = (V, E) is any graph G′ = (V ′, E ′) such that
V ′ ⊂ V and V ′ ⊂ E. The subgraph induced by V ′ ⊂ V , denoted by G[V ′] is
the graph G′ = (V ′, E ∩

(
V ′

2

)
), where

(
V ′

2

)
:= {{u, v}; u, v ∈ V ′}. We say that

V ′ spans G[V ′].
Let H be a graph, we say that a graph G is H-free if it does not have

H as a subgraph. For example, G is triangle-free if there is no subgraph of G

that is a triangle. In Figure 2.1a we have an example of a triangle-free graph
and in Figure 2.1b we have an example of a graph with one of its triangles
highlighted.

(a) Example of Triangle-free graph (b) Graph with a triangle in red

Figure 2.1
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Chapter 2. Background on Graphs 16

The adjacency matrix of graph G is a matrix that encondes the adjacen-
cies between vertices of G. Given an arbitrary order of vertices, let u and v

be the i-th and j-th vertices. We will denote by AG(u, v) the entry Ai,j of the
matrix. Using this notation, we have:

AG(u, v) =

1 if {u, v} ∈ E,

0 otherwise.

We say G = (V, EG) and H = (V, EH) are isomorphic if there is a
bijection π : V → V such that π(EG) = EH , where the image of a edge set
under π is defined as:

π(E) := {{π(u), π(v)} : {u, v} ∈ E} .

We define also π(G) := (π(VG), π(EG)). The idea is that an isomorphism be-
tween graphs is a bijection between the vertices that preserves the neighbor-
hood.

We define an automorphism of a graph G as being an isomorphism
between G and G. We will denote the number of automorphisms of a graph G

by Aut(G).
In Figure 2.2 we can see an example of an automorphism π, where

π(v1) = v4, π(v2) = v1, π(v3) = v2, π(v4) = v3. We can understand π as a
90◦ clockwise rotation.

Figure 2.2: Example of one of the automorphisms of G
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3
Background on Graph Property Testing

In this section we will introduce most of the notation and definitions used
in this thesis.

As some propositions introduce constants, we will use the notation αi.j to
denote the constant α introduced in Proposition/Corollary/Lemma/Theorem
i.j.

Let G = (V, EG) and H = (V, EH) be graphs. We will use the normalized
symmetric difference to measure the distance between the graphs:

δ(G, H) := |EG∆EH |/n2, (3-1)

where |V | = n.
A graph property is defined as a set of graphs that is closed under

isomorphism, as in Definition 3.1.

Definition 3.1 (Graph Property) A graph property is a set P such that
if G ∈ P, then for every bijection π : VG → VG, π(G) ∈ P.

The distance between a graph G on n vertices and a property P is defined
as

δ(G, P) := minH∈Pnδ(G, H), (3-2)
where Pn := {H = (V, E) ∈ P : |V | = n}

We say that a graph G on n vertices is ϵ-far from P if δ(G, P) > ϵ, or
equivalently, if for every G′ ∈ Pn, | EG∆EG′ |> ϵn2. Otherwise, it is ϵ−close
from P .

3.1
Complexity

To measure the complexity of an algorithm, it is common to calculate the
time complexity or running time [8]. However, in Property Testing, the focus
is on the query complexity, which is the number of times the input is accessed.
In our case, the input is a graph and we need to somehow access it. The model
that will be used by us is the dense graph model [2], where we have access
to the adjacency matrix AG of the graph. So, the query complexity measures
the number of times we need to ask if a pair of nodes (i, j) is adjacent to each
other.
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Chapter 3. Background on Graph Property Testing 18

3.2
Property Tester and Testable Properties

We can now define what is a Property Tester:
Definition 3.2 (Graph Property Tester) Let G = (V, E) be a graph on n
vertices and P = ⋃

n∈N Pn a graph property. A tester for P is an algorithm that
receives a parameter ϵ ∈ (0, 1), n and G as inputs and the following holds:

1. For any input G that satisfies P, the tester accepts G with probability at
least 2/3;

2. For any input G that is ϵ-far from P, the tester rejects G with probability
at least 2/3.

Where we say that a tester for P accepts G if it returns that G ∈ P and rejects
G if it returns that G is ϵ-far from P.

In case the probability of the first condition is equal to 1, we say that
the tester is one-sided error and otherwise it is two-sided error.

Note that we are dividing the possible inputs G into three types: The
ones that satisfy P , the ones that are ϵ-far from P , and the ones that are
ϵ-close from P but do not satisfy P . We make no guarantees about the output
in the third case.
Definition 3.3 (Testable Property) A graph property P is testable if there
is a tester that makes a number of edge queries which is bounded by some
function q(ϵ) that is independent of the size of the input.

Another definition that will be important in demonstrating the main
result is the definition of estimable property.
Definition 3.4 ((ϵ, δ)-estimable Property) Let P = ⋃

n∈N Pn be a graph
property. We say P is (ϵ, δ)-estimable if there is a probabilistic algorithm T
such that:

1. For every input G that is (ϵ−δ)-close to P, the algorithm accepts G with
probability at least 2/3;

2. For every input G that is ϵ-far from P, the algorithm rejects G with
probability at least 2/3;

3. The number of queries of the algorithm is constant (independent of n).

Definition 3.5 (Estimable Property) We call a property estimable if it is
(ϵ, δ)-estimable for every fixed ϵ > 0 and δ > 0.

The following result by Fischer and Newman [9] will be important to
prove the main result.
Theorem 3.6 Every testable graph property is estimable.
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Chapter 3. Background on Graph Property Testing 19

3.3
Tester for Biclique

A graph G = (V, E) is a biclique, or complete bipartite graph, if there
exists a bipartition V = V1 ∪ V2 such that E = {{u, v} : (u, v) ∈ V1 × V2}.
By this definition, a graph without edges is considered a biclique due to the
bipartition V = V ∪ ∅. We denote by B the property of being a biclique. In
this section we show that the property of being a biclique is testable with an
one-sided error tester.

The idea of the algorithm is simple. Select a vertex arbitrarily. Then
repeat the following procedure 2/ϵ times: select two more vertices at random.
If the subgraph induced by them isn’t a biclique, then return that the original
graph doesn’t satisfy the property of being a biclique. If in all procedures the
induced subgraph is a biclique, return that the original graph satisfies the
property of being a biclique. This algorithm is formally stated as Algorithm 2

Proposition 3.7 Algorithm 2 is a one sided error tester for B that makes
O(1/ϵ) queries.

Algorithm 2: Random tester for B property
1 Input : integer n, proximity parameter ϵ and access to G on n vertices
2 Output: YES if the algorithm says that x ∈ B, FAR otherwise
3 Select the first vertice u of G
4 for i = 1 to 2/ϵ do
5 Select more 2 vertices vi, wi uniformly at random
6 Query the 3 pairs of edges {u, vi}, {u, wi}, {vi, wi}
7 if G[{u, vi, wi}] isn’t a biclique then
8 Return FAR

9 Return YES

Note: As explained in Chapter 2, the order of the vertices is arbitrary.
Thus, u is an arbitrary vertex of the graph.

Let (u, v) be a pair of vertices of G. We say that (u, v) is a violating
pair with respect to a bipartition V1, V2 if the edge {u, v} does not satisfy the
property expected by an edge of a biclique. A violating pair can either be a
pair of vertices u, v belonging to either V1 or V2 that have an inner edge or a
pair of vertices u, v one belonging to V1 and the other a V2 that do not have
an edge. In Figure 3.1a we have an example of a graph that has 2 violating
pairs and in Figure 3.1b we have the same graph but with the edges related
to the violating pairs painted in red.
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Chapter 3. Background on Graph Property Testing 20

(a) Example of Graph with 2 violat-
ing pairs

(b) Edges between the violating pairs
in red

Figure 3.1

With this definition, we are ready to prove Proposition 3.7.
Proof of Proposition 3.7 To verify if G[{u, vi, wi}] is a biclique, we make
only 3 queries. The total number of queries is then bounded by 6/ϵ = O(1/ϵ).

Suppose G = (V, E) ∈ B. In this case, because it is a biclique, any
induced subgraph is a biclique, so the algorithm always returns Y ES.

Assume that G = (V, E) is ϵ−far from B, this means that given any
bipartition V = V1 ∪ V2, there are more than ϵn2 violating pairs with respect
to this bipartition. We have that u defines a bipartition of V , where V1 = Γ(u)
and V2 = V \ Γ(u). Note that u ∈ V2. From the above observation, there
are more than ϵn2 violating pairs with respect to this bipartition. Thus, the
probability that vi and wi are chosen such that (vi, wi) forms a violating pair
is at least ϵn2/n2 = ϵ.

If Ai is the event that none of the edges (u, vi), (vi, wi), (wi, u) is violating
for all i and Bi the event where the edge (vi, wi) is not violating for all i. Clearly
Ai ⊂ Bi. We want to show that Pr[Ai] ≤ 1/3. However, by monotonicity, it is
enough to show that Pr[Bi] ≤ 1/3. As discussed above, we have:

Pr[Bi] ≤ (1 − ϵ) 2
ϵ ≤ e−2 ≤ 1/3.

Where the last inequality is stated in the Appendix (Lemma 10.3). Thus, the
probability that some violating edge is chosen is at least 2/3.

■

Many graph property testers follow the same pattern: Given G = (V, E),
select a set V ′ of q vertices and accept G if G[V ′] satisfies a given property,
which motivates Definition 3.8.

Definition 3.8 (Canonical Tester) A tester T for a property P is canonical
if the following holds: There exists a function s : Z∗

+ × (0, 1) → Z∗
+ and a

property P ′ such that given n ∈ Z∗
+, 0 < ϵ < 1 and access to G = (V, E) on
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Chapter 3. Background on Graph Property Testing 21

n vertices, T uniformly selects a set of s(n, ϵ) vertices of G and accepts if and
only if G[s] has a property P ′.

Note that P and P ′ do not have to be the same property. However, for
many natural properties, such as k-colorability, P = P ′ [10]. Also, note that
the query complexity is

(
s(n,ϵ)

2

)
.

The following proposition from Goldreich and Trevisan [10] guarantees
that, at the cost of squaring the query complexity, we can assume without loss
of generality that every tester works as a canonical tester.

Proposition 3.9 Let P be any graph property with query complexity qP .
Then P has a canonical tester of query complexity q′

P(n, ϵ) = O(qP(n, ϵ)2).
Furthermore, if P has a one-sided error tester of query complexity q, then P
has a one sided-error canonical tester with query complexity

(
2q
2

)
.

To prove that some properties are testable we will need a result known
as Szemerédi regularity lemma, which will be introduced in Chapter 4.
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4
Regularity Lemma and Characterization of Testability

In this chapter, we state the Szemerédi Regularity Lemma, an essential
tool for this thesis along with some applications. At the end of the chapter,
we enunciate the main result of this thesis, a combinatorial characterization of
which properties are testable.

4.1
Regularity Lemma

Let A and B be subsets of vertices of a graph G. We define eG(A, B)
as the number of edges of G between A and B. The edge density of the pair
is defined by dG(A, B) = eG(A, B)/|A||B| . If the graph G is clear from the
context, we omit the subscript G.

Definition 4.1 (γ-regular pair) We say that the pair (A, B) is γ-regular if
we have

| d(A′, B′) − d(A, B) |≤ γ, (4-1)
for all A′ ⊂ A and B′ ⊂ B with

| A′ |≥ γ | A | and | B′ |≥ γ | B | . (4-2)

Less formally, for large-enough subsets A′ ⊂ A and B′ ⊂ B, the density
between A′ and B′ should be close (within γ) to the density between A and
B. This idea is shown in Figure 4.1.

Figure 4.1: Density d(A, B) and d(A′, B′) should not differ by much in a γ-
regular pair.

Note that we can change the inequalities of the condition 4-2 to equalities.
This observation will be useful in many proofs. Also note that when γ > 1, any
pair becomes trivially γ-regular, so it’s interesting to analyze with 0 < γ < 1.
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In Figure 4.2 we have an example of 2/3-regular pair A, B that is not 1/5-
regular, where A and B have 15 vertices each. Basically, the example consists
of a bipartite graph where 14 of the 15 vertices of A connect with 14 of the 15
vertices of B.

To check this, let’s call vA and vB the exceptional vertices of A and B.
In this case, d(A, B) = 14·14

15·15 . By choosing A′ ⊂ A and B′ ⊂ B each with 10
vertices, we have 4 possibilities: vA ∈ A′ and vB ∈ B or vA ̸∈ A′ and vB ∈ B or
vA ∈ A′ and vB ̸∈ B or vA ̸∈ A′ and vB ̸∈ B. In any of the 4 cases it is verified
that |d(A′, B′)−d(A, B)| ≤ 2/3. Note however that (A, B) is not (1/5)-regular,
since if we choose A′ ⊂ A and B′ ⊂ B each with 3 vertices such that vA ∈ A′

and vB ∈ B′, we have d(A′, B′) = 4/9, which makes |d(A, B)−d(A′, B′)| > 1/5.

Figure 4.2: Example of a 2/3-regular pair that is not 1/5-regular pair

Let V be the vertices set of a graph G, a partition V = V1 ∪ V2 · · · ∪ Vk

of V into k parwise disjoint sets is called an equipartition if || Vi | − | Vj ||≤ 1
for all ≤ i < j ≤ k. The number of partition classes, k, is called the order of
the partition.

Definition 4.2 (γ-regular equipartition) We say that an equipartition
V = V1 ∪ V2 · · · ∪ Vk of the vertex set of a graph is γ-regular if at most γ

(
k
2

)
pairs (Vi, Vj) are not γ-regular.

We may now state the Szemerédi Regularity lemma [6]:

Proposition 4.3 (Regularity Lemma) For any given γ > 0 and k0 ≥ 1,
there is a constant N = N4.3(k0, γ) such that any graph G on n ≥ N

vertices admits a γ-regular equipartition of its vertex set with order k, for
some k0 ≤ k ≤ N.

The Regularity Lemma says that every graph has an γ-regular partition
of relatively small order. In many applications it is enough to know the densities
of the bipartite graph that connects the parts Vi and Vj of the partition. If a
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graph G has a γ-regular partition of order k, we can define an auxiliary graph F

on k vertices where each edge {i, j} has weight d(Vi, Vj) if (Vi, Vj) is γ-regular.
Many times, we can prove properties of G by proving them for the graph F .

For example, if a graph G = (V, E) admits a γ-regular equipartition such
that the auxiliary graph F has a triangle with sufficiently large edge weights,
we can guarantee that the graph G has many triangles. We formalize this
statement in Proposition 4.4 below.

For the proof of this result and other applications of the Regularity
Lemma, we recommend the reference [11].

Proposition 4.4 Let G = (V, E) be a graph. For any density d > 0,
there exists a regularity parameter γ(d) = d/2 and a number of triangles
δ(d) = (1 − d) − d3/8 such that if A, B, C are disjoiint subsets of V , each
pair γ-regular with density at least d, then G has at least δ · |A||B||C| distinct
triangles with vertices from each of A, B and C.

We will define a property that will be important for enunciating the main
result [5].

Definition 4.5 (Regularity-instance) A regularity-instance is a pair R =
(F, γ) where 0 < γ ≤ 1, and F is a weighted graph such that e(F ) ≥
(1 − γ)

(
k
2

)
where k := |V (F )| is called the order of the regularity-instance.

If ij ∈ E(F ) then we write di,j for the associated weight. We say that a
graph G = (V, E) satisfies the regularity-instance R if there is an equipartition
V = V1 ∪ V2 ∪ · · · ∪ Vk such that for all (i, j) ∈ E(F ), the pair (Vi, Vj) is
γ-regular and there is ⌊di,j|Vi||Vj|⌋ edges between Vi and Vj. The complexity of
a regularity-instance is defined by max(k, 1/γ).

Using this definition, the Regularity Lemma (Proposition 4.3) implies
that for any 0 < γ ≤ 1, we have that every graph G satisfies some regularity-
instance with parameter γ. Futhermore, the order, k of the regularity-instance
is bounded as a function of γ.

Given a regularity-instance R = (F, γ), in the next chapters it will be
useful to think of F as a weighted complete graph, in this way we will denote
by F the weighted complete graph obtained by adding edges not present in F

with weight 0.
The following result, which we prove in Chapter 9, states that it is

relatively easy to test whether a graph satisfies a regularity-instance.

Theorem 4.6 For any regularity-instance R, the property of satisfying R is
testable.
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As mentioned earlier, knowing that a graph G satisfies a certain
regularity-instance R allows us to infer properties of G, such as the fact that it
has many triangles. The theorem above says that we can make these inferences
quickly.

4.2
Triangle-Free tester

The triangle removal lemma can be obtained as a consequence of the
Regularity Lemma. This lemma was initially proposed by Ruzsa and Szemerédi
[12] , later extended by Erdős, Frankl, and Rödl to the Graph removal lemma
[13]. In Proposition 4.7 we state the triangle removal lemma in a different way
from the original, using the definitions already introduced. Let us call T the
triangle-free property.
Proposition 4.7 For any positive ϵ < 1, there exists δ4.7(ϵ) such that if
G = (V, E) is a graph on n vertices and ϵ-far from T , then it contains at
least δ4.7(ϵ)n3 triangles.

We will show how to use it to verify that the property of being triangle-
free is testable with one-sided error tester.
Proposition 4.8 Algorithm 3 is a one-sided error tester for T that makes a
number of queries that does not depend on n.

Algorithm 3: Random tester for T property
1 Input : integer n, proximity parameter ϵ, access to G on n vertices
2 Output: YES if the algorithm says that x ∈ T , FAR otherwise
3 Select randomly and independently 1/δ4.7(ϵ) triples of vertices.
4 if at least one of the triples is a triangle then
5 Return FAR
6 else
7 Return YES

Proof To check if each triple is a triangle, we need to make 3 queries, so the
total number of queries is at most 3/δ4.7(ϵ), which only depends on ϵ.

Suppose G = (V, E) ∈ T . In this case, no triple can form a triangle in
the graph, causing the algorithm to always return YES.

Suppose G is ϵ-far from T . By Proposition 4.7, the probability that a
chosen triple is a triangle is greater than or equal to δ4.7(ϵ)n3/

(
n
3

)
, which in

turn is greater than or equal to 6δ4.7(ϵ). This way, the probability that the
algorithm returns YES is bounded by (1 − 6δ4.7(ϵ))1/δ4.7(ϵ) ≤ e−6 ≤ 1/3. ■

This proves that the Triangle-Free property is testable. We will prove
this again at the end of the thesis using Corollary 9.4.
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4.3
Characterization of Testable Graph Properties.

We can prove that the triangle-free property is testable following a
different line of reasoning. This proof will be done rigorously at the end of
the thesis, but here we will here sketch it.

Given G = (V, E), by the Regularity Lemma, we can say that G has
an equipartition U = {U1, U2, . . . , Uk} γ-regular such that k ≥ 1/γ. However,
this does not give us any information about the inner edges of each set Ui nor
about the edges between non-γ-regular pairs.

We define G′ to be a cleaned-up version of G by making few modifications.
As we have few pairs that are not γ-regular, we can make few changes so that
such pairs do not have edges connecting them. Furthermore, as we have a large
number of sets k, we will have few edges inside each Ui, so we can also make
few modifications so that each Ui has no internal edges. Furthermore, we can
delete the edges between of sparsely pairs. That is, we can make a few changes
to ensure that the equipartition U has the following properties:

1. There are no internal edges inside each Ui

2. There are only edges between dense γ-regular pairs

After these changes, it follows that, if G′ has a triangle, this triangle has
vertices in distinct sets Ui, Uj, Uk, such that all pairs are γ-regular and dense.
In this way, looking for a triangle in G′ is the same thing as looking for a
triangle in F , the auxiliary graph of the equipartition. Furthermore, if we find
a triangle in F , by Proposition 4.4 we can say that G′, and consequently G,
has many triangles.

In this way, we can reduce our problem to testing whether, with a few
changes, it is possible to transform G into a graph that satisfies a regularity
instance R such that F has a triangle. Let us call R this family of regularity-
instances. That is, we can reduce our problem to verifying whether G is close
to satisfy some of the regularity-instances of R. As, by Proposition 4.6, it
is possible to do each test quickly, it is expected that the property of being
triangle-free is testable. We will do this rigorous proof in Chapter 9.

It is possible to reduce other testable properties to the problem of testing
a family of regularity-instances, such as the property of being k-colorable and
the property of having a “large” cut [1]. The main result of [5] establishes that
this is a characterization of which properties are testable. Now we present the
formal definitions to state the result.

Definition 4.9 (Regular-Reducible) A graph property P is regular-
reducible if for any δ > 0, there exists r = rP(δ) such that, for any n,
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there is a family R of at most r regularity-instances, each with complexity at
most r, such that for every n-vertex graph G and for every ϵ > 0:

1. If G satisfies P, then for some R ∈ R, G is δ-close to satisfying R

2. If G is ϵ-far from satisfying P, then for all R ∈ R, G is (ϵ − δ)-far from
satisfying R.

In the above definition ϵ is greater than zero, but can be arbitrarily
small. If one takes ϵ = 0, G satisfies P if and only if it satisfies one of
the regularity-instances. That way, instead of testing P , we can test finite
regularity-instances. Theorem 4.10 is the main result of [5] that we prove in
this thesis.

Theorem 4.10 (Main Result) A graph property is testable if and only if it
is regular-reducible.

This means that we could have tested the property of being triangle-
free in another way, just by showing that it is regular-reducible. An important
observation is that this does not necessarily guarantee the tester with minimum
query complexity, since the constants involving the Regularity Lemma are large
[14]. Informally, a property P is testable if and only if knowing the auxiliary
graph F of a regular partition of a graph G is enough to determine whether
G is close or far from satisfying P . We interpret this result by saying that the
property of satisfying a certain instance of regularity R is the most difficult
property to test, since any testable property can be reduced to testing finite
instances of regularity. This result gives a purely combinatorial characterization
of which properties are testable, solving a question asked in [2] that was left
open for more than 10 years.

DBD
PUC-Rio - Certificação Digital Nº 2112392/CA



5
Enhancing Regularity

When defining a γ-regular pair of density d, many restrictions are
imposed on the densities of the pairs of possible sets. The objective of this
chapter is to show that if a bipartite graph almost satisfies all these restrictions,
then it is close to be a γ-regular pair with density d. This idea is formalized in
Proposition 5.1. Both propositions and lemmas were presented in the article
[5]. We will use the notation x = a ± b to say that x ∈ [a − b, a + b]

The following abuse of notation will be common: x = a±b = c±d means
that x ∈ [a − b, a + b] =⇒ x ∈ [c − d, c + d]

Proposition 5.1 The following holds for any 0 < δ ≤ γ ≤ 1: If (A, B) is a
(γ + δ)-regular pair with density d ± δ, where |A| = |B| = m ≥ m5.1(d, δ), then
it is possible to make at most 50δm2/γ2 modifications and turn (A, B) into a
γ-regular pair with density d.

To prove this proposition we need two lemmas. The first one will allow
us to make modifications and adjust the pair density without changing the
regularity too much.

Lemma 5.2 If (A, B) is a (γ + δ)-regular pair satisfying d(A, B) = d ± δ,
where |A| = |B| = m ≥ m5.2(d, δ), so it is possible to make at most 2δm2

modifications and turn (A, B) into a (γ + 2δ)-regular pair with density d.

The second lemma takes a bipartite graph with density d and returns a
bipartite graph with the same density but more regular.

Lemma 5.3 The following holds for any 0 < δ ≤ γ ≤ 1. Let A and B be two
sets of vertices of size m ≥ m5.3(δ, γ) with d(A, B) = d. Suppose further that
for any pair of subsets A′ ⊂ A and B′ ⊂ B such that |A′| = |B′| = γm we
have d(A′, B′) = d ± (γ + δ), then it is possible to make at most 3δm2/γ edge
modifications and turn (A, B) into a γ−regular pair with density d.

With these two lemmas in hand, we can prove Proposition 5.1.
Proof Proposition 5.1 By Lemma 5.2, we can make at most 2δm2 edge
modifications and turn (A, B) into a (γ+2δ)-regular pair with density d. Then,
all pairs of subsets A′′ ⊂ A and B′′ ⊂ B of size γm have density at most

(d + γ + 2δ)(γ + 2δ)2m2/(γ2m2) ≤ (d + γ + 2δ)(1 + 8δ/γ) ≤ d + γ + 14δ/γ.

Similarly, the density is at least d−δ −14δ/γ. Thus, (A, B) has density d

and each pair of subsets (A′′, B′′) of size γm has density d± (γ +14δ/γ). Using
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Lemma 5.3, we can make at most 42δm2/γ2 additional modifications to the
edges and then turn (A, B) into a γ-regular pair with density d. So we made
a total of 42δm2/γ2 + 2δm2 ≤ 50δm2/γ2 modifications and we got the desired
result. ■

We can now state a result that will be useful to prove the main result.

Proposition 5.4 Let R = (F, γ) be a regularity-instance of order k. Suppose
a graph G has an equipartition V = V1 ∪ V2 ∪ · · · ∪ Vk of order k such that such
that the following two conditions hold for all (i, j) ∈ F :

– d(Vi, Vj) = di,j ± γ2ϵ/50 ;

– (Vi, Vj) is (γ + γ2ϵ/50)-regular.

Then G is ϵ-close to satisfaying R .

Proof We need to show that we can transform G into a graph satisfying
R using at most ϵn2 modifications. By Proposition 5.1, for each pair (i, j) ∈
E(GR), we can make at most 50γ2ϵ/50

γ2 (n/k)2 ≤ ϵn2/k2 edge modifications to
turn (Vi, Vj) into a ϵ-regular pair with density di,j. As we know that the number
of pairs is less than or equal to

(
k
2

)
, we have that the total number of necessary

modifications is less than or equal to ϵn2, as desired. ■

Now, we prove the auxiliary lemmas.
Proof of Lemma 5.2

Let G = (V, E) be a graph and A, B ⊂ V subsets of vertices that satisfy
the conditions of the statement. We have d(A, B) = d ± δ, so d(A, B) = d + p,
where p ∈ [−δ, δ]. Let us analyze in cases. Note that when γ + 2δ ≥ 1, the
condition of being (γ + 2δ)-regular is satisfied for any pair, so in this case, just
make the modifications in order to obtain the density d desired, which can
be done with less than δm2 modifications. In this way, we will assume that
γ + 2δ < 1.

Case 1: First, let us assume that 0 < p ≤ δ(γ + 2δ)2. In that case,
just remove any pm2 edges. Let H = (V, EH) be the graph after removing the
edges. We have, therefore, that dH(A, B) = d. We will now show that the pair
(A, B) is (γ + 2δ)-regular in H.

Take a pair (A′, B′), A′ ⊂ A, B′ ⊂ B both with size (γ + 2δ)m. By
the observation of Definition 4.1, we just need to show that dH(A′, B′) =
dH(A, B) ± (γ + 2δ) = d ± (γ + 2δ).

Initially, as the pair (A, B) is (γ ± δ)-regular in G and A′ ⊂ A, B′ ⊂ B

with |A′| = |B′| = (γ + 2δ)m, we have dG(A′, B′) = dG(A, B) ± (γ + δ) =
d+p± (γ + δ) =⇒ d+p−γ − δ ≤ dG(A′, B′) ≤ d+p+γ + δ . However, as we
remove pm2 ≤ δ(γ +2δ)m2 edges, we have d−γ −2δ ≤ dH(A′, B′) ≤ d+γ +2δ.
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Case 2: Assume now that p ≥ δ(γ+2δ)2. The strategy to show that there
is a way to make less than 2δm2 modifications and obtain the desired conditions
will be through the probabilistic method. That is, we will not explicitly find
which changes to make, but will do it through a random process and show
that the probability of the desired event is greater than 0, which is enough to
demonstrate its existence. Our process will occur in two steps, first we remove
some edges between A and B randomly. Then some deterministic adjustments
are made. We will show that with probability greater than 3/4 we have that
(A, B) is a (γ +2δ)-regular pair, and also with probability greater than 3/4 we
have that d(A, B) = d. Thus, by union bound, we obtain that with probability
greater than 1/2 both conditions occur.

In the random process, we remove each edge between A and B randomly
and independently with probability p/(d + p). Let H1 = (V, EH1) be the graph
after these modifications. Thus, the expected number of edges removed will
be:

p

d + p
(d + p)|A||B| = p|A||B| ≤ δ|A||B|.

Thus, we have that the expected value of the density dH1(A, B) is d.
As we assume that p ≥ δ(γ + 2δ)2, we have dG(A, B) ≥ p ≥ δ(γ + 2δ)2. By
Lemma 10.1, for m big enough, m ≥ m5.2(δ, γ), the probability that dH1(A, B)
deviates from d more than 1/m0.5 is at most 1/4. In particular, the number of
edge modifications is at most 3δm2/2 with probability at least 3/4.

In the deterministic step, if we modify at most m1.5 edges arbitrarily we
will be sure that dH2(A, B) = d, where H2 = (V, EH2) is the modified graph
after these second step. The total number of modifications is then at most
3δm2/2 + m1.5 ≤ 2δm2 for m large enough. So far, with probability greater
than or equal to 3/4, dH2(A, B) = d. It remains to show that with probability
greater than 3/4, (A, B) is (γ + 2δ)-regular in H2.

As we initially assumed that (A, B) was a (γ + δ)-regular pair in G, we
have that dG(A′, B′) = d + p ± (δ + γ) for any pair of subsets A′ ⊂ A and
B′ ⊂ B both with size (γ + 2δ)m. As in the random process we remove each
edge with probability p/(p + d), the expected value of dH1(A′, B′) is between:

(d + p + δ + γ)
(

1 − p

d + p

)
≤ d + γ + δ,

and
(d + p − γ − δ)

(
1 − p

d + p

)
≥ d − δ − γ.

That is, E[dH1(A′, B′)] = d ± (γ + δ) for A′, B′ of size (γ + 2δ)m. So
we want to show that with probability greater than 3/4, d(A′, B′) does not
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deviate more than δ from its expected value. Assume first that dG(A′, B′) ≤ δ/2
originally. We then have that dH1(A′, B′) can change at most δ/2 with relation
to dG(A′, B′). Thus, in this case, dH1(A′, B′) can deviate from its expectation
by at most δ/2. Furthermore, by adding or removing m1.5 edges to (A, B) in the
deterministic step, we can change dH2(A′, B′) by at most (γ+2δ)−2m−0.5 ≤ δ/2
with relation to dH1(A′, B′) for m big enough. So for these pairs, we have
dH2(A′, B′) = d ± (γ + 2δ).

Suppose now that dG(A′, B′) ≥ δ/2. This way, we have at least δ(γ +
2δ)2m2/2 edges available to be removed in the first process. Thus, by Lemma
10.1, the probability that dH1(A′, B′) deviates from its expected value by more
than δ/2 is at most 2e−2( 1

2 δ)2 1
2 δ(γ+2δ)2m2 . Since there are at most 22m pairs

(A′, B′), the probability that at least one of them is such that dH1(A′, B′)
deviates from its expected value by more than δ/2 is, by union bound, at most
22m2e−2( 1

2 δ)2 1
2 δ(γ+2δ)2m2 ≤ 1/4 for m big enough. Thus, with probability at

least 3/4, all pairs (A′, B′) with |A′| = |B′| = (γ + 2δ)m satisfy dH1(A′, B′) =
d ± (γ + 3δ/2). By an argument similar to the previous paragraph, in the
second step, adding or removing m1.5 edges can change dH2(A′, B′) by at most
δ/2 with relation to dH1(A′, B′), where we get that dH2(A′, B′) = d ± (γ + 2δ).
This concludes the proof, as we can make an analogous argument for the case
−δ ≤ p ≤ 0, just adding edges instead of removing them. ■

Proof of Lemma 5.3
For each pair of vertices a ∈ A and b ∈ B we will either leave the pair

unaltered or we will rerandomize whether there is an edge between a and b.
We use the following two-step process.

In the first step, with probability 1− 2δ
(δ+γ) we declare that no change will

be made between a and b, and with probability 2δ
(δ+γ) we move to the second

step.
In the second step, we ignore whether or not there is an edge between a

and b. With probability d we draw an edge between a and b and with probability
1 − d we do not draw it. This process is summarized in Figure 5.1.
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Figure 5.1: Random process to edit the graph.

Claim 5.5 With probability greater than or equal to 3/4, we make at most
2.5δm2/γ edge modifications.

Proof The number of edge modifications is less than or equal to the number
of times we decided to move to the second step. Since we have m2 possible
pairs, we make this decision m2 times. The distribution of the results of these
m2 decisions is given by the binomial distribution B(m2, 2δ

δ+γ
) whose expected

value is 2δ
δ+γ

m2 and by Lemma 10.1, the probability of deviating from its
expected value by more than 1

2δm2 is at most 2e−2(δ/2)2m2 . For m large enough,
m ≥ m5.3(δ, γ), we have 2e−2(δ/2)2m2

< 1/4. This way, with probability greater
than or equal to 3/4, we make at most δm2/2 + 2δ

δ+γ
m2 ≤ 2.5δm2/γ edge

modifications. ■

Note that given a pair of adjacent vertices (a, b), for them to remain
adjacent, either we decide not to do anything in the first step or we go to
the second step and then decide to draw an edge between a and b. That is,
the probability that the pair of vertices remains adjacent is 1 − 2δ

δ+γ
+ 2dδ

δ+γ
. If

the vertices are non-adjacent, for them to become so, we need to go to the
second step and then decide to draw an edge between (a, b), which happens
with probability 2dδ

δ+γ
.

Claim 5.6 With probability greater than or equal to 3/4, we have d(A, B) =
d ± 1/(m0.5).

Proof By hypothesis, initially we have dm2 adjacent vertices and (1 − d)m2

non-adjacent. As adjacent vertices stay adjacent with probability 1− 2δ
δ+γ

+ 2dδ
δ+γ
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and non-adjacent vertices become adjacent with probability 2dδ
δ+γ

, we have that
the expected value of adjacent vertices is :(

1 − 2δ

δ + γ
+ 2dδ

δ + γ

)
(dm2) + 2dδ

δ + γ
(1 − d)m2 = dm2.

By Lemma 10.1, we have that, for m large enough, the probability that
the number of adjacent vertices deviates from dm2 by more than m1.5 is at
most 1/4, from which the result follows. ■

Claim 5.7 With probability at least 3/4, all sets A′ ⊂ A and B′ ⊂ B whose
size is γm, satisfy d(A′, B′) = d ± (γ − δ/2).

Proof Let A′ and B′ be sets of the desired size. Let e be the number of
edges between A′ and B′. We then have that the number of non-adjacent pairs
is |A′||B′| − e. In this way, we have that the expected value of the number of
edges between A′ and B′ after the process is

e

(
1 − 2δ

δ + γ
+ 2dδ

δ + γ

)
+ (|A′||B′| − e)

(
2dδ

δ + γ

)

= e

(
1 − 2δ

δ + γ

)
+ |A′||B′|

(
2dδ

δ + γ

)
.

We have e = |A′||B′|(d ± (γ + δ)) by assumption. Thus, the expected
value of number of adjacent vertices is at most:

|A′||B′|(d + (γ + δ))
(

1 − 2δ

δ + γ

)
+ |A′||B′|

(
2dδ

δ + γ

)
= |A′||B′|(d + δ − γ)

Analogously, substituting e = |A′||B′|(d(γ + δ)), we obtain that the expected
value of the number of edges between A′ and B′ is at least:

|A′||B′|(d − γ + δ).

By Lemma 10.1, the probability that the number of edges between A′ and
B′ deviates from its expected value by more than δ|A′||B′|/2 is at most
2e−2( δ

2 )2(γm)2 . Since the number of pairs (A′, B′) is at most 22m, by union
bound, the probability that any of these pairs deviates from its expected
value more than δ|A′||B′|/2 is at most 22m2e−2( δ

2 )2(γm)2 , which is less than
or equal to 1/4 for m big enough, m ≥ m5.3. Thus, with probability greater
than or equal to 3/4, all pairs (A′, B′) such that |A′| = |B′| = γm satisfy
d(A′, B′) = d ± (γ − δ/2). ■

With these three claims we can prove the lemma. We have that with
positive probability, we make at most 2.5δm2/γ modifications, d(A, B) =
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d ± 1/m0.5 and in addition all pairs (A′, B′) of size γm satisfy d(A′, B′) =
d ± (γ − δ/2). Thus, as the probability is positive, there is a way to modify the
graph satisfying these 3 restrictions. From this form, we can add or remove at
most m1.5 to ensure that d(A, B) = d. For every pair of sets (A′, B′) of size
γm, this will change d(A′, B′) by at most γ2/m0.5 ≤ δ/2 for m large enough,
which implies that d(A′, B′) = d±γ. This makes (A, B) γ-regular with density
d, as desired.

■
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6
More About Regular Pairs

According to Proposition 3.9, we can assume without loss of generality
that every tester is canonical. This means that given a graph G = (V, E)
and a tester T for a graph property P1, there exists a graph property P2

such that T selects a subset Q ⊂ V of q vertices and accepts or rejects G

analyzing whether G[Q] satisfies P2. Thus, given a graph G that satisfies a
certain regularity-instance R, in this chapter we try to understand how the
induced subgraph G[Q] inherits this regularity from G. The results presented
allow us to estimate the probability of G being accepted by a canonical tester
given that G satisfies a certain regularity-instance. This will be deducted from
Corollary 6.10. These results will then be used in Chapter 7 to prove that every
testable property is regularly reducible.

According to the definition of ϵ-regular pairs, we realize that, intuitively,
a pair (A, B) is “regular” if, for all subsets of non-negligible size of X ⊂ A

and Y ⊂ B, the density between such sets is very close to the density between
A and B. This property ensures a good distribution of edges between A and
B, which makes the pair (A, B) similar to a random bipartite graph in some
sense.

Suppose that V1, V2, . . . , Vk are k sets of m vertices. Let us do a random
process where we connect each vertex between Vi and Vj randomly and
independently with probability di,j. Given a graph H = (V ′, EH) with k

vertices and a permutation σ : [k] → [k], what is the probability that a specific
k-tuple v1 ∈ V1, v2 ∈ V2, . . . , vk ∈ Vk span H in the order defined by σ, that is,
each vi occupies the position defined by σ(i)? The answer is:

∏
(i,j)∈EH

dσ(i),σ(j)
∏

(i,j ̸∈EH)
(1 − dσ(i),σ(j))

This motivates us to introduce the following definition.

Definition 6.1 Let H = (V, EH) be a graph on k vertices, let W be weighted
complete graph on k vertices, where the weight of an edge (i, j) is di,j. For a
permutation σ : [k] → [k], define:

IC(H, W, σ) :=
∏

(i,j)∈EH

dσ(i),σ(j)
∏

(i,j ̸∈EH)
(1 − dσ(i),σ(j))
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In the previous random process, the expected value of the number of k-
tuples of vertices v1 ∈ V1, v2 ∈ V2, . . . , vk ∈ Vk that span H in the order defined
by σ is IC(H, W, σ)mk, where W is the complete graph with weights di,j. Claim
6.2 shows that if we replace the random bipartite graphs by regular enough
bipartite graphs the result is almost the same. This result was demonstrated
in Fischer’s article [4].

Claim 6.2 For any δ and k, there is a γ = γ6.2(δ, k) such that the following
holds. Consider k disjoint sets V1, V2, . . . , Vk each with m vertices such that
all pairs (Vi, Vj) are γ-regular and let W be a weighted complete graph of
k vertices, with weights given by di,j = d(Vi, Vj). Then for every graph H

on k vertices and every permutation σ : [k] → [k], the number of k-tuples
v1 ∈ V1, v2 ∈ V2 . . . vk ∈ Vk that span an induced copy of H in the order defined
by σ is

(IC(H, W, σ) ± δ)mk.

.

In the process defined before the Definition 6.1, how could we answer the
same question about the probability without fixing a specific vertex order σ?
The answer would be to sum over all permutations and divide by the number of
times each copy of H is counted, that is, 1

Aut(H)
∑

σ IC(H, W, σ). This motivates
Definition 6.3.

Definition 6.3 Let H be a graph on k vertices, let W be a weighted complete
graph on k vertices, where the weight of an edge (i, j) is di,j. We define:

IC(H, W ) := 1
Aut(H)

∑
σ

IC(H, W, σ).

Again, Claim 6.4 shows that if we replace the random bipartite graphs
by regular enough bipartite graphs the result is almost the same.

Claim 6.4 For any δ and k, there is a γ = γ6.4(δ, k) such that: if V1, V2, . . . , Vk

are k sets of m vertices, all pairs (Vi, Vj) are γ-regular and W is a complete
graph of k weighted vertices, where the weights are di,j = d(Vi, Vj), then for
every graph H of k vertices the number of induced copies of H, which have
precisely one vertex in each of the sets V1, . . . , Vk is:

(IC(H, W ) ± δ)mk.
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Proof Let us prove that δ6.4(δ, k) = δ6.2(δ/k!, k) is enough. Assume that
V1, V2, . . . , Vk are as stated and H is a graph on k vertices. By Claim 6.2,
given a permutation σ, the number of induced copies of H that have precisely
one vertex vi in each Vi such that vi occupies the role of the vertex σ(i) is
(IC(H, W, σ) ± δ/k!)mk. Summing over all permutations will count Aut(H)
times each copy of H, so we need to divide the final result by Aut(H):

1
Aut(H)

(∑
σ

(IC(H, W, σ) ± δ/k!)
)

mk

=
(

1
Aut(H)

∑
σ

IC(H, W, σ) ± δ

)
mk

= (IC(H, W ) ± δ)mk.

■

The previous results use as a hypothesis the fact that we have exactly k

sets Vi. What if we have more sets?

Definition 6.5 Let H be a graph with k vertices, let R′ = (VR′ , ER′) be a
complete weighted graph with at least k vertices where the weight of an edge
(i, j) is di,j and let W be the set of all subsets of VR′ with k vertices, we define:

IC(H, R′) :=
∑

W ∈W
IC(H, W ).

Lemma 6.6 says that it is possible to estimate the number of induced
copies of a given graph H in any graph G that satisfies a determined regularity-
instance R.

Lemma 6.6 For any δ and q, there are k = k6.6(δ, q) and γ = γ6.6(δ, q) such
that: For any regularity-instance R = (F, γR) of order at least k and with
γR ≤ γ, any G that satisfies R and for any graph H with h ≤ q vertices, the
probability that a specific h-tuple of vertices of G spans an induced copy of H

is IC(H, F ) ± δ.

During the proof we will need the following probability result.

Claim 6.7 Let E1, E2 and E3 be events such that:

1. Pr[E1] ≥ 1 − δ/3;

2. Pr[E2] ≥ 1 − δ/3;

3. Pr[E3|E1 ∩ E2] = x ± δ/3.
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Then Pr[E3] = x ± δ.

Proof of Claim 6.7 We need to show that:

– Pr[E3] ≥ x − δ;

– Pr[E3] ≤ x + δ.

Let us start with the first inequality:
By the definition of conditional probability, we have:

Pr[E3|E1 ∩E2] = Pr[E1 ∩E2 ∩E3]/Pr[E1 ∩E2] ≤ Pr[E3]/Pr[E1 ∩E2]. (6-1)

That way:
Pr[E3] ≥ Pr[E3|E1 ∩ E2]Pr[E1 ∩ E2]. (6-2)

However, we have that:

Pr[E1 ∩ E2] = −Pr[E1 ∪ E2] + Pr[E1] + Pr[E2] ≥ 1 − 2δ

3 . (6-3)

So, using Inequalities 6-2 and 6-3 we conclude that:

Pr[E3] ≥
(

1 − 2δ

3

)
Pr[E3|E1 ∩ E2] ≥ Pr[E3|E1 ∩ E2] − 2δ

3 ≥ x − δ. (6-4)

Now, we will show the second inequality. By the definition of conditional
probability we know that:

Pr[E3|E1 ∩ E2] = Pr[E1 ∩ E2 ∩ E3]/Pr[E1 ∩ E2] ≥ Pr[E1 ∩ E2 ∩ E3]. (6-5)

i.e:
Pr[E1 ∩ E2 ∩ E3] ≤ Pr[E3|E1 ∩ E2] ≤ x + δ/3. (6-6)

But we know thatE3 = (E3 ∩ E1 ∩ E2) ∪ (E3 ∩ E1 ∩ EC
2 ) ∪ (E3 ∩ EC

1 ), that way:

Pr[E3] ≤ Pr[E3 ∩ E1 ∩ E2] + Pr[E3 ∩ E1 ∩ EC
2 ] + Pr[E3 ∩ EC

1 ].

Rearranging and using conditions Pr[E1] ≥ 1 − δ
3 e Pr[E2] ≥ 1 − δ

3 we have
that:

Pr[E3] ≤ x + δ/3 + δ/3 + δ/3 ≤ x + δ,

what concludes the proof. ■

Proof of Lemma 6.6
Let us show that choosing k = 10q2

δ
and γ = min{ δ

3q2 γ6.4(1
3δ, q)} is

enough.
Let R be a regularity-instance as in the statement and G be a graph

satisfying R. Let V1, V2, . . . , Vl be an equipartition of G satisfying R and H

a graph on h ≤ q vertices. Choosing a h-tuple of G at random, what is the
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chance that at least 2 of these h vertices belong to the same set Vj of the
equipartition? We will show in Claim 6.8 that this probability is at most δ

3 .

Claim 6.8 Choosing a h-tuple of G at random, the chance that at least 2 of
these h vertices belong to the same set Vj of the equipartition is at most δ/3.

Proof of Claim 6.8 Let Ai be the event where at least two of the h vertices
are in the same Vi. We know from union bound that:

Pr[Ai] ≤
(

h

2

)
1
l2 ≤ h2

2l2 .

We want to bound the probability of Pr[⋃l
i=1 Ai]. By union bound we have:

Pr[
l⋃

i=1
Ai] ≤ l

h2

2l2 = h2

2l
.

Since h ≤ q and l ≥ k, we have

Pr[
l⋃

i=1
Ai] ≤ q2

2k
= δ

5 ≤ δ

3 .

■

Furthermore, as the equipartition is γ-regular and γ ≤ δ, we have the
probability that this h-tuple contains a pair of vertices vi ∈ Vi and vj ∈ Vj

such that (Vi, Vj) is not γ-regular is at most
(

h
2

)
γ ≤

(
q
2

)
γ ≤ 1

3δ. Therefore,
consider the following events:

1. E1 = {the h vertices v1, v2, . . . vh belong to distinct sets Vj};

2. E2 = {if each vertex of the tuple v1, v2, . . . , vh belongs to a distinct Vj,
then (Vi, Vj) is γ-regular, where vi ∈ Vi without loss of generality };

3. E3 ={A specific tuple v1, v2, . . . , vh spans H}.

We want to show that Pr[E3] = IC(H, F )±δ. Since Pr[E1] ≥ 1−δ/3 and
Pr[E2] ≥ 1 − δ/3 , by Claim 6.7 we only need to show that Pr[E3|E1 ∩ E2] =
IC(H, F ) ± δ/3.

Assuming that E1 and E2 occur, let us calculate the probability that
a specific tuple v1, v2, . . . , vh spans H. Since E1 and E2 occur, we have that
the tuple v1, v2, . . . , vh is such that vi ∈ Vi and (Vi, Vj) is γ-regular for each
i < j ≤ h. In this way, as γ ≤ γ6.4(1

3δ, q), all conditions of Claim 6.4 are
satisfied, and so for every possible set W of h sets Vi we get that the probability
that they span an induced copy of H is IC(H, W ) ± δ/3. This means that the
probability that Pr[E3] = IC(H, F ) ± δ/3. ■

We could also have stated Lemma 6.6 as follows:
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Lemma 6.9 For any δ and q, there are k = k6.6(δ, q) and γ = γ6.6(δ, q) such
that: For any regularity-instance R = (F, γR) of order at least k and with
γR ≤ γ , any G that satisfies R and for any graph H on h ≤ q vertices, the
number of induced copies of H in G is

(
IC(H, F ) ± δ

) (
n
h

)
.

We can also extend this result to families of graphs, as in Corollary 6.10.

Corollary 6.10 For any δ and q, there are k = k6.10(δ, q) and γ = γ6.10(δ, q)
with the following properties: For any regularity-instance R = (F, γR) of order
at least k and with error parameter γR ≤ γ , and for every family A of graphs
on q vertices, the number of induced copies of graphs H ∈ A in any n-vertex
graph satisfaying R is (∑

H∈A
IC(H, F ) ± δ

)(
n

q

)
.

Proof Let us show that taking k = k6.9

(
2−(q

2)δ, q
)

and γ = γ6.9

(
2−(q

2)δ, q
)

is enough. The idea will be to use Lemma 6.9 for each H ∈ A.
Let H ∈ A, and R be as in the statement, by Lemma 6.9, we have that

the number of induced copies of H in any graph satisfying R is (IC(H, F ) ±
2−(q

2)δ)
(

n
q

)
. Since all graphs of A have q vertices, the number of possible graphs

is at most 2(q
2). Thus, summing over all graphs H ∈ A, the total error is at

most δ
(

n
q

)
. ■
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7
First Direction: Testable Implies Regular Reducible

In this chapter we will prove the first direction of the main result

Proposition 7.1 If a graph property is testable then it is regular-reducible

To prove this proposition, we will use Proposition 3.9 and assume that
without loss of generality the tester is canonical. As explained in Chapter 3,
canonical testers for a property P select a set of q(ϵ, n) vertices of a graph G

and accept the graph if G[q] satisfies a given property P ′. We will then use the
technical results proved in Chapter 6.
Proof of Proposition 7.1

Assume that P is testable by a tester T , which by Proposition 3.9 we
can assume to be canonical without loss of generality.

Our intention is to build a family R of regularity-instances R as in
Definition 4.9.

Let n and δ be given. We can assume, without loss of generality, that
δ < 1/12, otherwise just replace δ with min{δ, 1/13}. Let q′ = q′(δ, n) be
the query complexity which is sufficient for T to distinguish between n-vertex
graphs satisfying P and those that are δ-far from satisfying it with probability
at least 2/3. Since T is testable, Definition 3.3, there exists q(δ) such that
q′(δ, n) ≤ q(δ).

As the tester is canonical, given G = (V, E) passed as input, it works by
selecting a set of vertices V ′ ⊂ V , obtaining an induced graph G[V ′] with q

vertices and rejects or accepts G based on G[V ′]. So let us denote by A the
family of graphs Q with q vertices that would be accepted by the algorithm if
G[V ′] were isomorphic to Q.

Define k = k6.10(δ, q), γ = γ6.10(δ, q) and N = N4.3(k, γ).
For all n such that q ≤ n ≤ N , consider all finite regularity-instances of

order n, where densities di,j belong to the finite set S = {0, δγ2

50q2 , 2δγ2

50q2 , . . . , 1}.
We will define I as the union of all these finite regularity-instances. Since q

depends only on δ, so far all constants depend exclusively on δ. Note that
given x ∈ (0, 1), this construction guarantees that there exists s ∈ S such that
|x − s| ≤ δγ2

50q2 .
We now prove that if we take R = {R = (F, γR) ∈ I : ∑H∈A IC(F , H) ≥

1/2}, P is regular-reducible.
We need to show, by Definition 4.9, that for every G and ϵ > 0:

1. If G satisfies P , then for some R ∈ R, G is δ-close to satisfying R;
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2. If G is ϵ-far from satisfying P , then for all R ∈ R, G is (ϵ − δ)-far from
satisfying R.

By construction,∑H∈A IC(F , H) is an estimate of the fraction of induced
copies of graphs H ∈ A in a graph G of n vertices satisfying R. By Corollary
6.10, the error of this estimation is at most δ.

First property: Let G be a graph satisfying P . We have that T accepts
G with probability at least 2/3. Since T is canonical, this means that at least
2/3 of the subsets V ′ of q vertices of G are such that G[V ′] is isomorphic to a
graph of A, that is, there are at least 2

(
n
q

)
/3 sets V ′. Let K be that quantity.

By the Regularity Lemma (Proposition 4.3) there exists a γ-regular
partition of G of order k′, where k ≤ k′ ≤ N . By the construction of I,
we have that there exists an regularity-instance R′ with the same order k′ such
that R′ = (F ′, γ′) ∈ I and the densities of R′ are close to the densities of
the regular partition of G. More precisely, for each density d of the regular
partition of G, there exists a density d′ in R′ such that |d − d′| ≤ δγ2

50q2 .
By Proposition 5.4, we can state that G is δ/q2-close to satisfying such

regularity-instance R′, that is, we can transform G into a graph that satisfies R′

with at most δn2/q2 changes. Given an edge, we have at most
(

n−2
q−2

)
subgraphs

of q vertices that use that edge, so changing an edge decreases K by at most(
n−2
q−2

)
. By making the necessary changes to transform G into a graph that

satisfies R′, we then decrease K by at most δn2
(

n−2
q−2

)
/q2 ≤ δ

(
n
q

)
, making K to

be at least 2
(

n
q

)
/3 − δ

(
n
q

)
> (1

2 + δ)
(

n
q

)
since δ < 1/12.

As ∑H∈A IC(F ′, H)
(

n
q

)
is an estimative for K with an error of at most

δ
(

n
q

)
and after changes K > (1

2 + δ)
(

n
q

)
, we have ∑H∈A IC(F ′, H) ≥ 1/2. That

is, with less than δn2 changes, G can be transformed into a graph satisfying
R′ ∈ R, or in other words, G is δ-close to satisfying R′ ∈ R, just like we
wanted.

Second Property:
Suppose G is ϵ-far from satisfying P . If δ ≥ ϵ, we are done. Assume now

that δ < ϵ.Suppose for a contradiction that G is (ϵ − δ)-close to satisfying a
regularity-instance R ∈ R. That is, there exists G′ satisfying R such that G is
(ϵ − δ)-close to G′. Claim 7.2 asserts that G′ is δ-far from satisfying P .

Claim 7.2 G′ is δ-far from satisfying P.

Proof Assume for a contradiction that G′ is δ-close to satisfying P . So it’s
possible to make less than δn2 changes to G′ to get a graph that satisfies P .
However, by hypothesis, it is possible to do less than (ϵ − δ)n2 modifications
in G to get G′. Making these changes in sequence, it is then possible to do less
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than (ϵ−δ)n2 +δn2 = ϵn2 modifications to transform G into a graph satisfying
P , which is absurd given that G is ϵ-far from satisfying P . ■

Thus, since G′ is δ-far from satisfying P , the probability that T accepts
G′ is less than 1/3.

However, since G′ satisfies R, this means that at least (1/2 − δ)
(

n
q

)
subsets of q vertices of G′ span a graph of A. As δ < 1/12, we have
(1/2 − δ)

(
n
q

)
> (1/3 + δ)

(
n
q

)
. So T accepts G′ with probability at least 1/3 + δ,

a contradiction. ■
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8
Sampling Regular Partitions

So far, several times we start with a graph G and we need to get properties
on some induced subgraph G[S]. In this chapter, we will prove technical results
about how the regularity of G is inherited by G[S] and vice versa. These results
are important tools for demonstrating the main result.

Let us define what two close partitions are.

Definition 8.1 (δ-similar regular-partition) An equipartition U =
{U1, U2, . . . , Uk} is δ-similar to a γ-regular equipartition V = {V1, V2, . . . , Vk}
if:

1. d(Ui, Uj) = d(Vi, Vj) ± δ, ∀i < j;

2. If (Vi, Vj) is γ-regular, then (Ui, Uj) is (γ + δ)-regular.

Note that when U and V may be equipartitions of different graphs.
Furthermore, note that this definition is not symmetric due to the second
condition imposed.

The main result of this chapter is to show that when S is large enough,
G and G[S] are close to satisfying the same regularity-instance. We now state
this result formally.

Proposition 8.2 For every k and δ there exists a q = q8.2(k, δ) such that for
every γ ≥ δ and k′ ≤ k the following holds. Let G = (V, E) be a graph and
S ⊂ V a sample of q vertices, then each of the following has probability at least
2/3:

(i) For all γ-regular equipartition V of the vertices of G with order k′ , it
holds that G[S] has an equipartition U with the same order which is δ-
similar to V;

(ii) For all γ-regular equipartition U of the vertices of G[S] with order k′, it
holds that G has an equipartition V of the same order which is δ-similar
to U .

Our starting point will be the result of Fischer [7].

Lemma 8.3 For every k and δ there is q = q8.3(k, δ) such that the following
holds for every γ ≥ δ and k′ ≤ k: If a graph G has a γ-regular equipartiion
V = {V1, V2, . . . , Vk′}, then with probability at least 2/3, a sample of q vertices
will have an equipartition U = {U1, U2, . . . , Uk′} satisfying:
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(i) d(Ui, Uj) = d(Vi, Vj) ± δ, ∀i < j;

(ii) if (Vi, Vj) is γ-regular, (Ui, Uj) is 50γ1/5-regular.

This lemma guarantees to inherit a weaker regularity than the one guaranteed
by Proposition 8.2. The strategy to strengthen Lemma 8.3 and thus obtain
Proposition 8.2 will be to show that when two graphs share a γ-regular
partition , then they share all γ′- regulars partitions where γ′ > γ. We state
this result formally in Lemma 8.5. To state it, we need the following definition.

Definition 8.4 ((δ, γ)-alike regular-partitions) Two γ-regular equiparti-
tions V = {V1, V2, . . . , Vk} and U = {U1, U2, . . . , Uk} are (δ, γ)-alike if:

1. d(Ui, Uj) = d(Vi, Vj) ± δ ∀i < j;

2. Both (Vi, Vj) and (Ui, Uj) are simultaneously γ-regular for at least (1 −
γ)
(

k
2

)
pairs i < j.

This definition, unlike the Definition 8.1, is symmetric. In general, if we have
two γ-regular equipartitions U = {U1, U2, . . . , Uk} and V = {V1, V2, . . . , Vk},
(Ui, Uj) be γ-regular does not necessarily imply that (Vi, Vj) is γ-regular. If the
partitions are (δ, γ)-alike regular, we have that implication in both directions
and on at least (1 − γ)

(
k
2

)
of the pairs.

Lemma 8.5 For every k and δ there is ω = ω8.5(k, δ) such that the following
holds for every k′ ≤ k and γ > 0. Suppose that two graphs G = (V, E)
and G′ = (V ′, E ′) have (ω, ω)-alike regular equipartitions V = {V1, V2, . . . , Vl}
and V ′ = {V ′

1 , V ′
2 , . . . , V ′

l } with l > 1/ω. If G′ has a γ-regular equipartition
A′ = {A′

1, A′
2 . . . , A′

k′} then G has an equipartition A = {A1, A2, . . . , Ak′}
which is δ-similar to A′.

We will need the following simple inequality:

Claim 8.6 Let a1, . . . , al and b1, . . . , bl satisfy ∑1≤i≤l ai = ∑
1≤i≤l bi = 1 and

0 ≤ ai, bi ≤ c, then ∑
1≤i≤l aibi ≤ c

Proof ∑
1≤i≤l aibi ≤ ∑

1≤i≤l aic ≤ c
∑

1≤i≤l ai = c. ■

Proof of Lemma 8.5
Note that showing the case k′ = k is sufficient, as all k′ < k follow from

it. Then let k′ = k. Let us find ω that satisfies the statement. We have, by
hypothesis, an equipartition V of G of order l, an equipartition V ′ of G′ of
order l and an equipartition A′ γ-regular of G′ of order k. Also, V and V ′ are
(ω, ω)-alike regular partitions. We want to construct A partition of G δ-alike
to A′.
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Let us start our construction with the equipartition V ′ = {V ′
1 , V ′

2 , . . . , V ′
l }

of G′. Let us think about the constitution of the other equipartition A′ =
{A′

1, A′
2 . . . , A′

k} of G′. The equipartition A′ generates a partition A′
V ′

i
of the

vertices of each V ′
i , where A′

V ′
i

= {A′
1 ∩ V ′

i , A′
2 ∩ V ′

i . . . A′
k ∩ V ′

i }. Let us call pi,j

the proportion of the vertices of V ′
i that are in A′

j, that is pi,j = |A′
i ∩ V ′

j |/|V ′
j |.

In Figure 8.1 we have an example of a graph with two partitions A′ and V ′

where pi,j = 1/3 for all i, j.

(a) A′ partition (b) V ′ partition (c)

Figure 8.1: In this example, each pi,j = 1/3

We will construct A to have a similar effect in V . More precisely, we want
that for each (i, j), |Ai ∩Vj|/|Vj| = pi,j. To do so, we will partition each Vj into
k sets AV1,j, AV2,j . . . AVk,j where |AVi,j| = pi,j|Vj| in an arbitrary way. We will
define Ai to be ⋃l

j=1 AVi,j.
Let us show that this definition of A = {A1, A2, . . . Ak} is sufficient. For

that, we have to show that A is δ-similar to A′, which by Definition 8.1 means:

1. d(Ai, Aj) = d(A′
i, A′

j) ± δ ∀i < j;

2. if (A′
i, A′

j) is γ-regular, then (Ai, Aj) is (γ + δ)-regular.

Let us assume that the first condition is true and show the second. Then
we will show the first one.
Proof of Second Condition Without loss of generality, we will assume
(i, j) = (1, 2) and that the pair (A′

1, A′
2) is γ-regular. We will show that (A1, A2)

is (γ + 2δ)-regular to simplify the notation, and is clearly equivalent. We want
to show then that d(S1, S2) = d(A1, A2) ± (γ + 2δ) for each S1 ⊂ A1, S2 ⊂ A2

of sizes (γ + 2δ)|A1| and (γ + 2δ)|A2| .
Let d = d(A′

1, A′
2). As we are assuming the first condition, we have that

d(A1, A2) = d ± δ. With this, to show that d(S1, S2) = d(A1, A2) ± (γ + 2δ) we
only need to prove that that d(S1, S2) = d ± (γ + δ) for each S1 ⊂ A1, S2 ⊂ A2

of sizes (γ + δ)|A1| and (γ + δ)|A2|. We will show the upper bound d(S1, S2) ≤
d + (γ + δ) since the proof of the lower part is analogous. We want to show
then that:
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e(S1, S2) ≤ (d + γ + δ)|S1||S2| = (d + γ + δ)(γ + δ)2|A1||A2| (8-1)

Since A1 = ⋃l
j=1 AV1,j, let us define SV1,j = S1 ∩ AV1,j and SV2,j = S2 ∩ AV1,j.

This way, we have a partition of the sets S1 and S2 and we can rewrite our
goal as: ∑

1≤i,j≤l

e(SV1,i, SV2,j) ≤ (d + γ + δ)(γ + δ)2|A1||A2| (8-2)

Let n be the number of vertices of G. As V is an equipartition of order
l, Vi has n/l vertices for each i and analogously each Ai has n/k vertices.

Since V and V ′ are (ω, ω)-alike regular equipartitions, then all but ω
(

l
2

)
of the pairs are such that both (Vi, Vj) and (V ′

i , V ′
j ) are ω-regular. Let us call

M the set of pairs i, j such that both (Vi, Vj) and (V ′
i , V ′

j ) are ω-regular. To
demonstrate 8-2, let us try to bound the contribution of each pair (i, j) in the
sum ∑

1≤i,j≤l e(SV1,i, SV2,j). For this, we will divide into cases:
Case 1 (i = j):
The number of edges connecting a pair (SV1,i, SV2,i) is at most:

|SV1,i||SV2,i| ≤ |AV1,i||AV2,i| = p1,ip2,i|Vi||Vi|

= p1,ip2,i

(
n

l

)2
= p1,ip2,i

(
k

l

)2

|A1||A2| .

In this way, when summing up to all i’s, the contribution of these pairs is at
most |A1||A2|

∑
i

k
l
p1,i

k
l
p2,i, which is less than k|A1||A2|/l by Claim 8.6.

If we choose ω so that l ≥ 1/ω ≥ 6k/δ3 ≥ 6k/(δ)(γ + δ)2, then the
contribution to the summation of (8-2) is at most 1

6δ(γ + δ)2|A1||A2|.
Case 2 (|SV1,i| < ω|Vi| ou |SV2,j| < ω|Vj|) :
In this case |SV1,i| < ω|Vi| = ωn/l. The total number of vertices from G

that belong to these sets is at most ωn, so the number of vertices that belong to
A1 is at most ωn = ωkn/k = ωk|A1|. Thus, the contribution of pairs (i, j) such
that |SV1,i| < ω|Vi| = ωn/l is at most ωk|A1||A2|. Analogously, the number of
vertices of A2 in sets SV2,j such that |SV2,j| < ω|Vj| is at most kω|A2|. Thus,
the contribution of pairs (i, j) such that |SV2,j| < ω|Vj| = ωn/l is at most
ωk|A1||A2|.

This way, the contribution of both pairs to the summation of (8-2) is at
most 2kω|A1||A2|. Choosing ω so that ω ≤ δ3

12k
≤ δ(γ+δ)2

12k
, the contribution is

at most 1
6δ(γ + δ)2|A1||A2|.

Case 3 (Pairs (i, j) that do not belong to M) : The number of
pairs (Vi, Vj) that do not belong to M are at most ω

(
l
2

)
, so the number of

edges connecting sets Vi and Vj not ω-regulars are at most ω
(

l
2

)
|Vi||VJ | =

ω
(

l
2

)
n2/l2 ≤ ωn2. Using the fact that |A1| = |A2| = n/k, we have that the

number of edges connecting A1 and A2 that belong to pairs (Vi, Vj) that are not

DBD
PUC-Rio - Certificação Digital Nº 2112392/CA



Chapter 8. Sampling Regular Partitions 48

ω-regular are at most ωn2 = ωk2(n/k)2 = k2ω|A1||A2|. Choosing ω such that
ω ≤ 1

6δ3/k2 ≤ 1
6δ(γ + δ)2/k2, the contribution of these pairs to the summation

of (8-2) is at most 1
6δ(γ + δ)2|A1||A2|.

Thus, combining the first three cases the total contribution to the
summation of (8-2) is at most 1

2δ(γ + δ)2|A1||A2|.
Case 4 (other pairs) :
It remains to show that the other pairs contribute less than (d + γ +

δ/2)(γ + δ)2|A1||A2|. The proof will be extensive and we will use several
implications. For readability, Figure 8.2 can be used to help understand which
conditions were assumed and which implications were used to reach our goal.

Let B be the set of pairs that do not belong to any of the 3 cases. We
have that the pairs (i, j) in B are such that:

1. i ̸= j;

2. |SV1,i| ≥ ω|Vi| and |SV2,j| ≥ ω|Vj|;

3. (Vi, Vj) and (V ′
i , V ′

j ) are ω-regular.

We want to show then that∑
(i,j)∈B

e(SV1,i, SV2,j) =
∑

(i,j)∈B

d(SV1,i, SV2,j)|SV1,i||SV2,j| ≤ (d+γ+δ/2)|S1||S2|.

(8-3)
By properties 2 and 3 above, we have:

d(SV1,i, SV2,j) = d(Vi, Vj) ± ω. (8-4)

Furthermore, by the third property, if we take any SV ′
1,i ⊂ V ′

i such that
|SV ′

1,i| ≥ ω|V ′
i | and SV ′

2,j ⊂ V ′
j such that |SV ′

2,j| ≥ ω|V ′
j | we have that:

d(SV ′
1,i, SV ′

2,j) = d(V ′
i , V ′

j ) ± ω. (8-5)

If we take ω ≤ 1
6δ and use 8-4, to show 8-3 it is enough to show that :

∑
(i,j)∈B

d(Vi, Vj)|SV1,i||SV2,j| ≤ (d + γ + δ/3)|S1||S2|. (8-6)

As we know that V and V ′ are (ω, ω) alike, we have that d(Vi, Vj) =
d(V ′

i , V ′
j ) ± ω. Taking ω ≤ 1

6δ, and using this information, it suffices to show
that: ∑

(i,j)∈B

d(V ′
i , V ′

j )|SV1,i||SV2,j| ≤ (d + γ + δ/6)|S1||S2|. (8-7)

Furthermore, by 8-5, taking the same ω ≤ 1
6δ, it suffices to show that:∑

(i,j)∈B

d(SV ′
1,i, SV ′

2,j)|SV1,i||SV2,j| ≤ (d + γ)|S1||S2|. (8-8)

DBD
PUC-Rio - Certificação Digital Nº 2112392/CA



Chapter 8. Sampling Regular Partitions 49

We will show that there are SV ′
1,i ⊂ V ′

i and SV ′
2,j ⊂ V ′

j satisfying 8-9,
where |SV ′

1,i| ≥ ω|V ′
i | and |SV ′

2,j| ≥ ω|V ′
j |. This implies 8-8 since it considers

all pairs (i, j) and not just the ones in B.
∑

(i,j)∈1≤i,j≤l

d(SV ′
1,i, SV ′

2,j)|SV1,i||SV2,j| ≤ (d + γ)|S1||S2|. (8-9)

To construct SV ′
1,i ⊂ V ′

i and SV ′
2,j ⊂ V ′

j , let us define b1,i = |SV1,i|/|S1|
and b2,j = |SV2,j|/|S2|. In a similar way to the initial construction, let
(AV )′

i,j = A′
i ∩ V ′

j , let SV ′
1,i ⊂ (AV )′

1,i of size b1,i|(AV )′
1,i|. Similarly, let

SV ′
2,j ⊂ (AV )′

2,j of size b2,j|(AV )′
2,j|.

Let S ′
1 = ∪l

i=1SV ′
1,i and S ′

2 = ∪l
j=1SV ′

2,j. As we have |S1| ≥ γ|A1| and
|S2| ≥ γ|A2|, this implies that |S ′

1| ≥ γ|A′
1| and |S ′

2| ≥ γ|A′
2|. Dividing by

|S1||S2|, 8-9 becomes:∑
(i,j)∈1≤i,j≤l

d(SV ′
1,i, SV ′

2,j)b1,ib2,j ≤ (d + γ). (8-10)

However, note that ∑
(i,j)∈1≤i,j≤l d(SV ′

1,i, SV ′
2,j)b1,ib2,j = d(S ′

1, S ′
2). We

want to show then that d(S ′
1, S ′

2) ≤ (d + γ). However, (A′
1, A′

2) is γ-regular,
|S ′

1| ≥ γ|A′
1|, |S ′

2| ≥ γ|A2| and d(A′
1, A′

2) = d. Hence, d(S ′
1, S ′

2) ≤ (d+γ), which
completes the proof of the second condition. ■

Proof of first condition
In the previous proof, we wanted to show that d(S1, S2) = d ± (γ + δ).

Now we want to show that d(A1, A2) = d ± δ. The proof will be very similar,
so we will just explain which change results in this gain of a factor of γ in the
estimate.

In the previous proof, we needed to bound the density of (S1, S2), where
S1 ⊂ A1 and S2 ⊂ A2 As we now want to bound the density of (A1, A2),
instead of working with S1 and S2, we will work directly with A1 and A2.

Previously, to obtain Equation 8-10 we had to bound the density of pairs
of subsets of S ′

1 ⊂ A′
1 and S ′

2 ⊂ A′
2 through the γ- regularity of (A′

1, A′
2). The

purpose was to use 8-10 to bound density of subsets of A1 and A2 through a
series of implications, as best seen in Figure 8.2.

Now we want to bound the density of (A1, A2) and similarly we will do
this by quoting the density d(A′

1, A′
2). As d(A′

1, A′
2) = d, this equation plays

the role of 8-10 in the previous proof, which results in a gain of a factor of γ

in the density estimate of d(A1, A2) ■

These two conditions prove Lemma 8.5. ■

With this lemma, we will be able to prove Proposition 8.2, which is our
goal in this chapter.
Proof of Proposition 8.2 Let k and δ be given. Let ω′ = ω8.5(k, δ)
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Figure 8.2: Flow on implications of the fourth case of the proof of Lemma 8.5.
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and ω = (ω′/50)5 . We have ω, ω′ ≤ ω8.5(k, δ). By the Regularity Lemma
(Proposition 4.3) there exists a ω-regular partition of G of order l such that
1/ω ≤ l ≤ N4.3(1/ω, ω). Let V = {V1, V2, . . . , Vl} be this partition. We will
prove that taking q = q8.2(k, δ) = q8.3(l, ω) is enough. Let Q be a set of at least
q vertices of G. Let us initially proof Claim 8.7.

Claim 8.7 With probability at least 2/3, G[Q] and G have partitions that are
(ω′, ω′)-alike.

Proof By Lemma 8.3, with probability at least 2/3, G[Q] has an equipartition
U = {U1, U2, . . . , Ul} such that :

1. d(Vi, Vj) = d(Ui, Uj) ± ω′;

2. If (Vi, Vj) is ω-regular then (Ui, Uj) is ω′-regular.

Since ω′ = ω8.5(k, δ) and ω ≤ ω′, the conditions imply that:

1. d(Vi, Vj) = d(Ui, Uj) ± ω8.5(k, δ);

2. Both (Vi, Vj) and (Ui, Uj) are ω8.5(k, δ)-regular for all but at most
ω8.5(k, δ)

(
k
2

)
pairs i < j.

That is, with probability greater than 2/3 the graphs G and G[Q] have
partitions that are (ω8.5(k, δ), ω8.5(k, δ))-alike. ■

Now we will prove both assertions of Proposition 8.2.
Proof of assertion (i) By Claim 8.7, with probability at least 2/3, G[Q]
and G have partitions that are (ω′, ω′)-alike, where ω′ = ω8.5(k, δ). Then, by
Lemma 8.5, with probability at least 2/3, for any γ-regular partition in G of
order at most k, G[Q] has an equipartition that is δ-similar to it. ■

Proof of assertion (ii) By Claim 8.7, with probability at least 2/3, G[Q]
and G have partitions that are (ω′, ω′)-alike, where ω′ = ω8.5(k, δ). Then, by
Lemma 8.5, with probability at least 2/3, for any γ-regular partition of G[Q]
with order at most k, G has a partition δ-similar to it. ■

■
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9
Second Direction: Regular Reducibility Implies Testability

In this chapter, we apply the results demonstrated so far to prove the
second direction of the main result (Theorem 4.10). Before that, we need
to prove Theorem 4.6, which says that the property of satisfying a given
regularity-instance is testable.

9.1
Proof of Theorem 4.6

Proof Let R = (F, γ) be a regularity-instance of order k . Given G = (V, E)
and ϵ, let us construct a canonical tester that selects a subset Q of q vertices
of E and accepts G if and only if G[Q] is γ4ϵ

200k2 -close to satisfying R. Let us set
q so that the tester works.

We need to show that there exists q such that:

1. If G satisfies R then G[Q] is γ4ϵ
200k2 -close to satisfying R with probability

at least 2/3;

2. If G is ϵ-far from satisfying R then G[Q] is γ4ϵ
200k2 -far from satisfying R

with probability at least 2/3.

Let us show that there exists q = q(ϵ, k, γ) such that both conditions are
satisfied.

Claim 9.1 If G satisfies R, and q ≥ q1(ϵ, k, γ), then G[Q] is γ4ϵ
200k2 -close to

satisfying R with probability at least 2/3.

Proof of Claim 9.1 Assuming that G satisfies R, we have an equipartition
V = {V1, V2, . . . , Vk} such that for all (i, j) ∈ E(F ), the pair (Vi, Vj) is
γ-regular. By Proposition 8.2, taking q1(ϵ, k, γ) = q8.2(k, γ6ϵ

10000k2 ), we have
that with probability at least 2/3 the graph G[Q] will have an equipartition
A = {A1, A2, . . . , Ak} such that:

1. d(Ai, Aj) = di,j ± γ6ϵ
10000k2 ;

2. If (Vi, Vj) is γ-regular then (Ai, Aj) is (γ + γ6ϵ
10000k2 )-regular.

By Proposition 5.4, this implies that G[Q] is γ4ϵ
200k2 -close to satisfying R.

■

Claim 9.2 If G is ϵ-far from satisfying R, and q ≥ q2(ϵ, k, γ), then G[Q] is
γ4ϵ

200k2 -far from satisfying R with probability at least 2/3.
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Proof of Claim 9.2 Assuming that G[Q] is γ4ϵ
200k2 -close to satisfying R, we

will show that this, with probability at least 2/3, contradicts the hypothesis
that G is ϵ- far from R. Let us take q2(ϵ, k, γ) = q8.2(ϵ, k, γ).

G[Q] be γ4ϵ
200k2 -close to satisfying R means we can do less than q2 γ4ϵ

200k2

changes and make G[Q] satisfy R. Let U = {U1, U2, . . . , Uk} be the partition of
G[Q] that satisfies R after modifications. We will denote by G′ = (V, E ′) the
graph G after making such changes. As after q2 γ4ϵ

200k2 modifications each (Ui, Uj)
satisfies dG′(Ui, Uj) = di,j, we have dG(Ui, Uj) = di,j ± γ4ϵ

200 . Let us take a pair
(i, j) ∈ E(F ). This means that (Ui, Uj) is γ-regular in G′. This way, if we take
subsets SUi ⊂ Ui and SUj ⊂ Uj such that |SUi| ≥ γ|Ui| and |SUj| ≥ γ|Uj|,
we have dG′(SUi, SUj) = di,j ± γ. So, before the modifications these pairs were
such that dG(SUi, SUj) = di,j ± (γ + γ2ϵ

200) = d(Ui, Uj) ± (γ + γ2ϵ
100). This then

implies that each of these (Ui, Uj) pairs were (γ + γ2ϵ
100)-regular in G. Thus, G[Q]

has a partition U which is (γ + γ2ϵ
100)-regular, which by Proposition 8.2 implies

that with probability at least 2/3 G has a partition V that is γ4ϵ
200k2 -similar to

U . Suppose that this event occurs.
This means that V is such that d(Vi, Vj) = d ± γ2ϵ

50 for all i < j and for
all (i, j) ∈ E(F ), (Vi, Vj) is (γ + γ2ϵ

50 )-regular. By Proposition 5.4, G is ϵ-close
to satisfying R, which is a contradiction. ■

To make both conditions true, just take q greater than or equal to q1 and
q2. We can take for example q = max((q1(ϵ, k, γ), q2(ϵ, k, γ)). Furthermore, the
complexity only depends on (ϵ, k, γ). As γ and k are fixed for each regularity
instance, the complexity only depends on ϵ given a regularity instance R, which
completes the proof. ■

9.2
Proof of Theorem 4.10

Now we will prove Theorem 4.10, the main result.
Proof of Theorem 4.10 The first direction has already been proved in
Proposition 7.1. We will now prove the second direction. That is, we show that
every regular-reducible graph property is testable.

Let P be a regular-reducible graph property. Let n and ϵ be given and
set δ = ϵ/4. There is a family R of at most r = r(δ) regularity-instances each
with complexity at most r such that for every G with n vertices:

1. If G satisfies P , then for some R ∈ R, G is δ-close to satisfying R;

2. If G is ϵ-far from satisfying P , then for all R ∈ R, G is (ϵ − δ)-far from
satisfying R.

DBD
PUC-Rio - Certificação Digital Nº 2112392/CA



Chapter 9. Second Direction: Regular Reducibility Implies Testability 54

By Theorem 4.6, for any R ∈ R, the property of satisfying R is testable.
So, by Theorem 3.6, we can distinguish between graphs that are ϵ/4-close to
satisfying R from those that are 3

4ϵ-far from satisfying it, making a number of
queries that is limited by a function of ϵ. Let TR be the algorithm that makes
this distinction.

We will improve the TR algorithm through Claim 9.3.

Claim 9.3 It is possible to build an algorithm T ′
R that distinguishes between

graphs that are ϵ/4-close to satisfying R from those that are 3
4ϵ-far from

satisfying it such that the following holds:

1. The error probability of T ′
R is at most 1

3r

2. The query complexity of T ′
R is bounded by a function of ϵ

Proof of Claim 9.3 The idea will be to repeat the algorithm TR a number
of times m = m(δ) and accept G if it returns the majority result. Thus, we
need to prove that it is possible to choose m so that the error probability is
less than or equal to 1

3r
. Let Xi be a random variable that assumes the value

1 if the ith algorithm is correct and 0 otherwise. We have that ∑Xi is the
number of algorithms that got it right. We want to show that:

Pr
[∑

Xi ≤ m

2

]
≤ 1

3r
.

We know that E[Xi] = ∑m
i=1 Pr[Xi = 1] ≥ 2m

3 . Let E = E[Xi]. We will show
Inequality 9-1, which implies the desired inequality:

Pr[|
∑

Xi − E[Xi]| ≥ m/6] ≤ 1
3r

. (9-1)

As m
6 ≤ E

4 , it remains to show that:

Pr
[
|
∑

Xi − E| ≥ E

4

]
≤ 1

3r
. (9-2)

By Chernoff bound, Lemma 10.1, we have that:

Pr
[
|
∑

Xi − E| ≥ E

4

]
≤ 2e− E

48 .

As E ≥ 2m/3, we conclude that:

Pr
[
|
∑

Xi − E| ≥ E

4

]
≤ 2e− m

72 .

Taking m such that e− m
72 ≤ 1

6r
, we obtain the desired result. Since r

depends only on δ, which in turn is a function of ϵ, this completes the proof.
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■

We can now define our tester TP for P : Given G = (V, E) with n vertices.
We will accept G if for some R ∈ R, T ′

R says that G is ϵ/4-close to satisfy R.
Otherwise we will reject. We need to show that:

1. If G satisfies P , TP accepts G with probability at least 2/3;

2. If G is ϵ-far from P , TP rejects G with probability at least 2/3.

Proof of First condition Suppose G satisfies P . As δ = ϵ/4 and P is
regular-reducile to R, G has to be ϵ/4-close to satisfying some regularity-
instance R ∈ R. The probability that T ′

R returns that G is ϵ/4-close to R is
at least 1 − 1

3r
, which is greater than 2/3. By probability monotonicity, the

probability that TP accepts G also is at least 2/3.
■

Proof of Second condition Since P is regular-reducile to R, G has to be
3ϵ
4 -far from satisfying all of the regularity-instances R ∈ R. Let AR be the event
where the algorithm T ′

R says that G is 3
4 -far from R. We have Pr[AC

R] ≤ 1
3r

for
every R ∈ R.

We want to bound Pr[⋂R∈R AR]. However, we know that:

Pr[
⋂

R∈R
AR] ≥ 1 −

∑
R∈R

Pr[AC
R] ≥ 2/3,

concluding the proof of the second condition. ■

These two conditions complete the proof of Theorem. ■

9.3
Triangle-Freeness Testability

In Section 4.2 we prove that the property of being Triangle-free is testable
by presenting an algorithm. Now, we will show that this can also be deduced
from the general result Theorem 4.10.

Corollary 9.4 The property of being Triangle-Free is testable .

Proof Since P is Triangle-Free, by Theorem 4.10 we need to show that P is
regular-reducible. Let δ > 0 and γ′ = γ6.4(γ′, δ). Let γ = min{γ′, δ}. We define
R to be all regularity-instances R satisfying the following:

1. All R have regularity parameter γ;

2. The order of each R is at least 1
γ

and at most T4.3( 1
γ
, γ);

3. All densities di,j of R belong to the set C = {0, γ, 2γ, . . . , 1}
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4. For every R and every three Vi, Vj and Vk, at least one of the three
densities di,j, di,k, dj,k is 0.

Let G = (V, E) be a graph of n vertices, we need to show that:

– If G satisfies P , then for some R ∈ R, G is δ-close to satisfying R;

– If G is ϵ-far from satisfying P , then for any R ∈ R, G is (ϵ − δ)-far from
satisfaying R.

Proof of first condition We are assuming that G is triangle-free. By
the Regularity Lemma (Proposition 4.3), G has a γ-regular equipartition
V = {V1, V2, . . . , Vk} of order 1/γ ≤ k ≤ T4.3(1/γ, γ). Due to our choice of
γ′ as γ ≤ γ′, we can use Claim 6.4 to say that there is no i, j, k such that
(Vi, Vj), (Vj, Vk), (Vi, Vk) are γ-regular and d(Vi, Vj), d(Vj, Vk), d(V i, Vk) ≥ δ.
otherwise, these pairs would necessarily generate triangles. By the third
restriction that we imposed on R, we can say that there is a regularity-instance
R such that for each di,j of V , there is a density d′

i,j of R such that d′
i,j = di,j ±γ.

Using Lemma 5.1, we can make less than γn2 ≤ δn2 and transform the densities
of V into the same densities of R keeping the regularity. Thus, G is δ-close to
satisfying R. ■

Proof of second condition We are assuming that G is ϵ-far from satisfying
P . Assume that G is (ϵ−δ)-close to satisfying a regularity-instance R ∈ R and
let us see that this generates a contradiction. We can then remove less than
(ϵ − δ)n2 edges from G and turn it into a graph satisfying R. Note that any
graph satisfying R does not have triangles with a vertex in each set V due to
the fourth condition imposed on R. Make these modifications and additionally
remove all edges from within the sets Vi. By the second restriction imposed on
R, each Vi has a maximum size of γn ≤ δn, which causes us to remove less
than δn2 edges in this additional modification. In total, we made less than ϵn2

changes. These two changes ensure that the resulting graph is triangle-free.
This is a contradiction since G is ϵ-far from P .

■

■
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Appendix

10.1
Useful Inequalities
Lemma 10.1 (A Chernoff bound [15]) Suppose X1, X2, . . . , Xn are n in-
dependent Boolean random variables, where Pr[Xi = 1] = pi. Let E = ∑n

i=1 pi

and 0 ≤ δ ≤ 1. Then Pr(|∑n
i=1 Xi − E| ≥ δE) ≤ 2e−δ2E/3.

Lemma 10.2 (Another Chernoff Bound [1]) Let X1, X2, . . . , Xn be iden-
tical independent random variables ranging in [0, 1], and let p = E[X1]. Then,
for every ϵ ∈ (0, 1] it holds that :

Pr
∣∣∣∣∣∣ 1n

∑
i∈[n]

Xi − p

∣∣∣∣∣∣ > ϵ

 < 2e−ϵ2n/4.

Lemma 10.3 For all x ∈ R, (1 + x) ≤ ex.

Proof Note that y = x+1 is the tangent line to the graph of ex when x = 0.
Since ex is convex, the inequality follows. ■
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